Characterization of the Xylella fastidiosa PD1671 Gene Encoding Degenerate c-di-GMP GGDEF/EAL Domains, and Its Role in the Development of Pierce’s Disease
نویسندگان
چکیده
Xylella fastidiosa is an important phytopathogenic bacterium that causes many serious plant diseases including Pierce's disease of grapevines. X. fastidiosa is thought to induce disease by colonizing and clogging xylem vessels through the formation of cell aggregates and bacterial biofilms. Here we examine the role in X. fastidiosa virulence of an uncharacterized gene, PD1671, annotated as a two-component response regulator with potential GGDEF and EAL domains. GGDEF domains are found in c-di-GMP diguanylate cyclases while EAL domains are found in phosphodiesterases, and these domains are for c-di-GMP production and turnover, respectively. Functional analysis of the PD1671 gene revealed that it affected multiple X. fastidiosa virulence-related phenotypes. A Tn5 PD1671 mutant had a hypervirulent phenotype in grapevines presumably due to enhanced expression of gum genes leading to increased exopolysaccharide levels that resulted in elevated biofilm formation. Interestingly, the PD1671 mutant also had decreased motility in vitro but did not show a reduced distribution in grapevines following inoculation. Given these responses, the putative PD1671 protein may be a negative regulator of X. fastidiosa virulence.
منابع مشابه
AN ANALYSIS OF C-DI-GMP SIGNALLING IN XYLELLA FASTIDIOSA VIRULENCE Project Leaders:
Pierce’s disease (PD) poses a grave threat to many commercially important plants, including grapevine, and has placed the wine industries of Texas, California and other states at risk. Although Xylella fastidiosa (Xf) is recognized as the causal agent of the disease, the mechanism by which this xylem-limited, insect-transmitted bacterium induces sickness in plants remains almost completely unkn...
متن کاملScrG, a GGDEF-EAL protein, participates in regulating swarming and sticking in Vibrio parahaemolyticus.
In this work, we describe a new gene controlling lateral flagellar gene expression. The gene encodes ScrG, a protein containing GGDEF and EAL domains. This is the second GGDEF-EAL-encoding locus determined to be involved in the regulation of swarming: the first was previously characterized and named scrABC (for "swarming and capsular polysaccharide regulation"). GGDEF and EAL domain-containing ...
متن کاملCyclic di-GMP: a second messenger required for long-term survival, but not for biofilm formation, in Mycobacterium smegmatis.
Cyclic di-GMP (c-di-GMP) plays an important role in bacterial adaptation to enable survival in changing environments. It orchestrates various pathways involved in biofilm formation, changes in the cell surface, host colonization and virulence. In this article, we report the presence of c-di-GMP in Mycobacterium smegmatis, and its role in the long-term survival of the organism. M. smegmatis has ...
متن کاملRole of cyclic Di-GMP during el tor biotype Vibrio cholerae infection: characterization of the in vivo-induced cyclic Di-GMP phosphodiesterase CdpA.
In Vibrio cholerae, the second messenger cyclic di-GMP (c-di-GMP) positively regulates biofilm formation and negatively regulates virulence and is proposed to play an important role in the transition from persistence in the environment to survival in the host. Herein we describe a characterization of the infection-induced gene cdpA, which encodes both GGDEF and EAL domains, which are known to m...
متن کاملA systematic analysis of the role of GGDEF-EAL domain proteins in virulence and motility in Xanthomonas oryzae pv. oryzicola
The second messenger c-di-GMP is implicated in regulation of various aspects of the lifestyles and virulence of Gram-negative bacteria. Cyclic di-GMP is formed by diguanylate cyclases with a GGDEF domain and degraded by phosphodiesterases with either an EAL or HD-GYP domain. Proteins with tandem GGDEF-EAL domains occur in many bacteria, where they may be involved in c-di-GMP turnover or act as ...
متن کامل